The problem:
Find the largest product of 4 adjacent numbers in a 20×20 grid. Numbers can be adjacent in any direction, vertical, horizontal, diagonal.
http://projecteuler.net/problem=11
My solution (in java):
// Author: Will Clausen // // Date: Jan. 16, 2013 // // This program will solve Problem 11 from Project Euler. import java.util.Scanner; public class Problem11 { // Grid to store all the numbers int[][] grid; // The number of adjacent numbers to use when looking for the maximum int numAdjacent; // Grid dimensions int gridWidth; int gridHeight; // To make my solution a little more general, I allow for the specification // of the size of the grid and the number of adjacent entries in the matrix // to consider. Problem11(String input, int gw, int gh, int limit) { // Assign variables according to proper input. numAdjacent = limit; gridWidth = gw; gridHeight = gh; // Create scanner for reading from the input string. Scanner scanner = new Scanner(input); Scanner line; grid = new int[gridHeight][gridWidth]; // Variables for indexing into the grid when inserting numbers int widthIndex = 0; int heightIndex = 0; // While there are still things to read from the input. while (scanner.hasNextLine()) { // Get the next line of numbers for the grid line = new Scanner(scanner.nextLine()); // Take the numbers out of the line and put them in the grid. while (line.hasNextInt()) { int nextNum = line.nextInt(); grid[heightIndex][widthIndex] = nextNum; // Update the indexing accordingly widthIndex++; } // Update indexing accordingly widthIndex = 0; heightIndex++; line.close(); } // Remember to close the scanner. scanner.close(); // Method to ensure everything was inputted properly. printGrid(); } // Method to actually solve problem 11. public int solve() { // Start with an initial maximum, will be changed during execution. int maxProd = 1; // Initialize the next product to be checked to the mulitplicative identity. int nextProd = 1; // Arrays to keep track of the most recent numbers seen. int[] horiz = new int[numAdjacent]; int[] vert = new int[numAdjacent]; int[] diag = new int[numAdjacent]; int[] diag2 = new int[numAdjacent]; int[] max = new int[numAdjacent]; // To simplify things, loop through the array in different directions // using multiple loops. It adds computation time, but it makes much // more sense conceptually. // get maximum horizontal product for (int i = 0; i < gridHeight; i++) { for (int j = 0; j <= (gridWidth - numAdjacent); j++) { for (int k = j; k < (numAdjacent + j); k++) { horiz[k % numAdjacent] = grid[i][k]; } nextProd = calcProd(horiz); if (nextProd > maxProd) { maxProd = nextProd; System.out.println("New max product is: " + maxProd); System.out.print("The array is: "); printArray(horiz); max = horiz; printArray(max); } } } System.out.print("The final horizontal array is: "); printArray(horiz); // get the maximum vertical product for (int i = 0; i < gridWidth; i++) { for (int j = 0; j <= (gridHeight - numAdjacent); j++) { for (int k = j; k < (numAdjacent + j); k++) { vert[k % numAdjacent] = grid[k][i]; } nextProd = calcProd(vert); if (nextProd > maxProd) { maxProd = nextProd; System.out.println("New max product is: " + maxProd); System.out.print("The array is: "); printArray(vert); max = vert; printArray(max); } } } System.out.print("The final vertical array is: "); printArray(vert); // get the maximum diagonal product (down and to the right) for (int i = 0; i <= (gridWidth - numAdjacent); i++) { for (int j = 0; j <= (gridHeight - numAdjacent); j++) { for (int k = 0; k < (numAdjacent); k++) { diag[k] = grid[i + k][j + k]; } nextProd = calcProd(diag); if (nextProd > maxProd) { maxProd = nextProd; System.out.println("New max product is: " + maxProd); System.out.print("The array is: "); printArray(diag); max = diag; printArray(max); } } } System.out.print("The final diagonal array is: "); printArray(diag); // get the maximum diagonal product (up to the right) for (int i = numAdjacent-1; i < gridHeight; i++) { for (int j = 0; j <= (gridWidth - numAdjacent); j++) { for (int k = 0; k < numAdjacent; k++) { diag2[k] = grid[i - k][j + k]; } nextProd = calcProd(diag2); if (nextProd > maxProd) { maxProd = nextProd; System.out.println("New max product is: " + maxProd); System.out.print("The array is: "); printArray(diag2); max = diag2; printArray(max); } } } int finalProd = calcProd(max); System.out.println("The product of the final array is: " + finalProd); printArray(max); return maxProd; } // Helper method for calculating the product of numbers in an array. public int calcProd(int[] nums) { int prod = 1; for (int i = 0; i < nums.length; i++) { if (nums[i] == 0) { return 0; } else { prod *= nums[i]; } } return prod; } // Helper method for printing the contents of an array of numbers in a nice way. public static void printArray(int[] numArray) { System.out.print("["); for (int i = 0; i < numArray.length; i++) { System.out.print(numArray[i] + ", "); } System.out.println("]"); } // Helper method for printing a gird of numbers in a nice way. public void printGrid() { for (int i = 0; i < gridHeight; i++) { System.out.print("["); for(int j = 0; j < gridWidth; j++) { System.out.print(grid[i][j] + ", "); } System.out.println("]"); } } /** * @param args */ public static void main(String[] args) { Problem11 prob11 = new Problem11("08 02 22 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08 \n" + "49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00 \n" + "81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65 \n" + "52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91 \n" + "22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80 \n" + "24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50 \n" + "32 98 81 28 64 23 67 10 26 38 40 67 59 54 70 66 18 38 64 70 \n" + "67 26 20 68 02 62 12 20 95 63 94 39 63 08 40 91 66 49 94 21 \n" + "24 55 58 05 66 73 99 26 97 17 78 78 96 83 14 88 34 89 63 72 \n" + "21 36 23 09 75 00 76 44 20 45 35 14 00 61 33 97 34 31 33 95 \n" + "78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92 \n" + "16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57 \n" + "86 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58 \n" + "19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40 \n" + "04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66 \n" + "88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69 \n" + "04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36 \n" + "20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16 \n" + "20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54 \n" + "01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48", 20, 20, 4); int solution = prob11.solve(); System.out.println("The solution is: " + solution); } }